Decentralized Computation Offloading and Resource Allocation in Heterogeneous Networks with Mobile Edge Computing
نویسندگان
چکیده
We consider a heterogeneous network with mobile edge computing, where a user can offload its computation to one among multiple servers. In particular, we minimize the system-wide computation overhead by jointly optimizing the individual computation decisions, transmit power of the users, and computation resource at the servers. The crux of the problem lies in the combinatorial nature of multi-user offloading decisions, the complexity of the optimization objective, and the existence of inter-cell interference. Then, we decompose the underlying problem into two subproblems: i) the offloading decision, which includes two phases of user association and subchannel assignment, and ii) joint resource allocation, which can be further decomposed into the problems of transmit power and computation resource allocation. To enable distributed computation offloading, we sequentially apply a many-to-one matching game for user association and a one-to-one matching game for subchannel assignment. Moreover, the transmit power of offloading users is found using a bisection method with approximate inter-cell interference, and the computation resources allocated to offloading users is achieved via the duality approach. The proposed algorithm is shown to converge and is stable. Finally, we provide simulations to validate the performance of the proposed algorithm as well as comparisons with the existing frameworks.
منابع مشابه
Efficient Radio Resource Management for Wireless Cellular Networks with Mobile Edge Computing
Mobile edge computing (MEC) has attracted great interests as a promising approach to augment computational capabilities of mobile devices. An important issue in the MEC paradigm is computation offloading. In this paper, we propose an integrated framework for computation offloading and interference management in wireless cellular networks with mobile edge computing. In this integrated framework,...
متن کاملHeterogeneous Services Provisioning in Small Cell Networks with Cache and Mobile Edge Computing
In the area of full duplex (FD)-enabled small cell networks, limited works have been done on consideration of cache and mobile edge communication (MEC). In this paper, a virtual FD-enabled small cell network with cache and MEC is investigated for two heterogeneous services, high-data-rate service and computation-sensitive service. In our proposed scheme, content caching and FD communication are...
متن کاملJoint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks
Mobile-Edge Computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this article, a MEC enabled multi-cell wireless network is considered where each Base Station (BS) is equipped with a MEC server that can assist mobil...
متن کاملLatency Optimization for Resource Allocation in Mobile-Edge Computation Offloading
By offloading intensive computation tasks to the edge cloud located at the cellular base stations, mobile-edge computation offloading (MECO) has been regarded as a promising means to accomplish the ambitious millisecond-scale end-to-end latency requirement of the fifth-generation networks. In this paper, we investigate the latency-minimization problem in a multi-user time-division multiple acce...
متن کاملComputation Rate Maximization for Wireless Powered Mobile-Edge Computing with Binary Computation Offloading
Finite battery lifetime and low computing capability of size-constrained wireless devices (WDs) have been longstanding performance limitations of many low-power wireless networks, e.g., wireless sensor networks (WSNs) and Internet of Things (IoT). The recent development of radio frequency (RF) based wireless power transfer (WPT) and mobile edge computing (MEC) technologies provide promising sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018